Changes in the tension in dsDNA alter the conformation of RecA bound to dsDNA–RecA filaments

نویسندگان

  • Alyson J. Conover
  • Claudia Danilowicz
  • Ruwan Gunaratne
  • Vincent W. Coljee
  • Nancy Kleckner
  • Mara Prentiss
چکیده

The RecA protein is an ATPase that mediates recombination via strand exchange. In strand exchange a single-stranded DNA (ssDNA) bound to RecA binding site I in a RecA/ssDNA filament pairs with one strand of a double-stranded DNA (dsDNA) and forms heteroduplex dsDNA in site I if homology is encountered. Long sequences are exchanged in a dynamic process in which initially unbound dsDNA binds to the leading end of a RecA/ssDNA filament, while heteroduplex dsDNA unbinds from the lagging end via ATP hydrolysis. ATP hydrolysis is required to convert the active RecA conformation, which cannot unbind, to the inactive conformation, which can unbind. If dsDNA extension due to RecA binding increases the dsDNA tension, then RecA unbinding must decrease tension. We show that in the presence of ATP hydrolysis decreases in tension induce decreases in length whereas in the absence of hydrolysis, changes in tension have no systematic effect. These results suggest that decreases in force enhance dissociation by promoting transitions from the active to the inactive RecA conformation. In contrast, increases in tension reduce dissociation. Thus, the changes in tension inherent to strand exchange may couple with ATP hydrolysis to increase the directionality and stringency of strand exchange.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RecA protein dynamics in the interior of RecA nucleoprotein filaments.

We characterize aspects of the conformation and dynamic state of RecA filaments when bound to dsDNA that are specifically linked to the presence of the second of the two bound DNA strands. Filaments bound to dsDNA exhibit a facile exchange between free and bound RecA monomers or oligomers in the filament interior that is not seen on ssDNA. The RecA mutant K72R, which binds but does not hydrolyz...

متن کامل

Tension on dsDNA bound to ssDNA-RecA filaments may play an important role in driving efficient and accurate homology recognition and strand exchange.

It is well known that during homology recognition and strand exchange the double stranded DNA (dsDNA) in DNA/RecA filaments is highly extended, but the functional role of the extension has been unclear. We present an analytical model that calculates the distribution of tension in the extended dsDNA during strand exchange. The model suggests that the binding of additional dsDNA base pairs to the...

متن کامل

The differential extension in dsDNA bound to Rad51 filaments may play important roles in homology recognition and strand exchange

RecA and Rad51 proteins play an important role in DNA repair and homologous recombination. For RecA, X-ray structure information and single molecule force experiments have indicated that the differential extension between the complementary strand and its Watson-Crick pairing partners promotes the rapid unbinding of non-homologous dsDNA and drives strand exchange forward for homologous dsDNA. In...

متن کامل

The simultaneous binding of two double-stranded DNA molecules by Escherichia coli RecA protein.

We have characterized the double-stranded DNA (dsDNA) binding properties of RecA protein, using an assay based on changes in the fluorescence of 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complexes. Here we use fluorescence, nitrocellulose filter-binding, and DNase I-sensitivity assays to demonstrate the binding of two duplex DNA molecules by the RecA protein filament. We previously established...

متن کامل

A DNA pairing-enhanced conformation of bacterial RecA proteins.

The RecA proteins of Escherichia coli (Ec) and Deinococcus radiodurans (Dr) both promote a DNA strand exchange reaction involving two duplex DNAs. The four-strand exchange reaction promoted by the DrRecA protein is similar to that promoted by EcRecA, except that key parts of the reaction are inhibited by Ec single-stranded DNA-binding protein (SSB). In the absence of SSB, the initiation of stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011